Dr. Jason Roh is an Assistant Professor at Harvard Medical School and a Beeson Scholar of the National Institute on Aging. Dr. Roh runs the interdisciplinary geriatric-cardiology clinic at MGH, and is a member of the Sections of Cardiovascular Medicine, Preventive Cardiology, Geriatrics, and Echocardiography. His lab in the CVRC focuses on the role of aging biology in cardiovascular disease.

Age has long been known to be a dominant risk factor for nearly all types of cardiovascular disease. However, how aging contributes to heart disease and whether it can be effectively modified to treat or prevent disease are unclear. Our group is addressing these questions by using geroscience approaches to identify mechanisms of aging biology associated with cardiovascular disease that can potentially be used as therapeutic targets. We utilize integrative approaches that incorporate high-throughput -omics technology for discovery with rigorous causal and functional assessments in animal models. Our team is actively investigating the role of aging biology in a wide spectrum of diseases, including heart failure, atrial fibrillation, frailty, and pregnancy-related cardiovascular diseases.

Dr. Roh received his B.A. from Amherst College in Biology (2001) and his M.D. and M.H.S. from Yale University (2008). He completed his internship and residency at Brigham and Women’s Hospital (2011), and his general cardiology fellowship, advanced echocardiography, and postdoctoral training in molecular cardiology at Beth Israel Deaconess Medical Center (2015). In January 2021, he joined the faculty of the CVRC to establish a cardiovascular aging biology laboratory.

Date posted: July 29, 2021 | Author: | Comments Off on Jason Roh, MD, MHS


Congenital Heart Disease (CHD) is the most common major birth defect, affecting an estimated 1 in 130 live births, yet the cause remains elusive. In a growing number of cases, genetic studies have traced CHD to defects in cilia, hair-like structures that are found in the developing heart. The Yuan lab seeks to understand how these cilia act as antennae to sense and translate extracellular signals into molecular processes that sculpt the early heart. A deeper understanding of how cilia function in heart development will provide critical insight into the rational design of new diagnostics and therapeutics that have the potential to improve the outcome and care of patients with CHD.

The Yuan lab utilizes embryological, cellular, genetic, molecular, biophysical, and microscopy-based approaches in zebrafish, mice and cell-based models. In addition, the Yuan lab develops and applies cutting-edge optical approaches, namely light sheet microscopy, optical tweezers, optogenetics, optical nanomaterials and laser nanosurgery.

Dr. Shiaulou Yuan is an Assistant Professor of Medicine at Massachusetts General Hospital and Harvard Medical School. Dr. Yuan received his undergraduate degree in molecular cell biology from University of California, Berkeley in 2004 under Dr. Athanasios Theologis. He completed his Ph.D. in genetics from Yale University in 2011 with Dr. Zhaoxia Sun. Dr. Yuan performed his postdoctoral training in cardiovascular biology and developmental biology with Dr. Martina Brueckner at Yale School of Medicine. He received additional postdoctoral training in light sheet microscopy, laser nanosurgery techniques, and biophysical approaches with Dr. Joe Howard at Yale University and Dr. Scott Fraser at University of Southern California. In 2018, he started his own independent laboratory in the Cardiovascular Research Center at Massachusetts General Hospital and Harvard Medical School. Dr. Yuan’s research focuses on elucidating the cellular and molecular mechanisms that shape the developing heart, and in particular, the function of cilia in this process.

Date posted: February 12, 2021 | Author: | Comments Off on Shiaulou Yuan, PhD


Director, Program in Cardiovascular Imaging, Martinos Center for Biomedical Imaging,
Director, Cardiovascular Bioengineering and Biomedical Imaging (CABBI) Program,
Medical Director, Institute for Innovation in Imaging (I3),
Cardiology Division and Department of Radiology, Massachusetts General Hospital;
Affiliated Faculty, Health Science and Technology (HST) Program,
Massachusetts Institute of Technology and Harvard Medical School

The Sosnovik lab is highly multidisciplinary with efforts in basic science, bioengineering and biomedical imaging all aimed at improving the understanding of common cardiovascular diseases.  The lab has a strong interest in mechanisms of cardiomyocyte injury and death including apoptosis, free DNA release and autophagy. This has been coupled with an interest in developing technologies to guide myocardial regeneration and the imaging of the cellular architecture of the heart to elucidate, and mimic, its microstructural properties. Fundamental discovery in cardiomyocyte biology is combined with fundamental discovery in bioengineering and biomedical imaging. This includes the development of targeted and theranostic nanoparticles, capable of detecting and modulating processes such as apoptosis and inflammation. Developments/applications in biomedical imaging have included initial descriptions of fluorescence tomography, diffusion tensor MRI tractography, optical coherence tractography, fluorescence lifetime imaging and targeted molecular MRI in the heart. New focus areas in the lab include PET-MR of histone deacetylase (HDAC) expression in the heart and mechanisms to reverse myocardial fibrosis. Systems approaches are used to model and integrate interconnected processes such as autophagy, HDAC expression and fibrosis. Our work ranges from single cells, including IPSc-derived cardiomyocytes, through small and large animal models to translational studies in humans. 

Date posted: January 4, 2021 | Author: | Comments Off on David Sosnovik, MD FACC


Dr. Aguirre is an Assistant Professor of Medicine at Harvard Medical School and a critical care cardiologist at the MGH Heart Center Intensive Care Unit. His clinical practice involves care of medical and surgical patients with all forms of advanced heart disease and he has particular interest in the area of acute decompensated heart failure and the use of mechanical circulatory support devices. Dr. Aguirre’s laboratory both develops and applies innovative molecular imaging and advanced microscopy technologies to investigate the pathophysiology of myocardial infarction, heart failure, and circulatory shock. The lab has pioneered the use of cardiac intravital microscopy to study the beating heart at cellular resolution in animal models and has explored multiple applications of this technology. In addition, the lab studies acute decompensated heart failure and shock in human patients using machine learning applied to data from the cardiac intensive care units at the MGH. Work in the lab has been funded by the National Institutes of Health, the American Heart Association, and CRICO.

Date posted: March 2, 2020 | Author: | Comments Off on Aaron Aguirre, MD, PhD


Millions of patients die annually from diseases that affect organs with limited regenerative capacity such as the heart. In contrast, zebrafish regenerate most organs naturally after injury. The goal of our research is to identify barriers to heart regeneration using the zebrafish as a model organism. Our lab is particularly interested in understanding how polyploidization (the increase in DNA content associated with the maturation of certain cell types) reduces the regenerative competence of cardiomyocytes. Our ultimate goal is to make fundamental discoveries that could be later used to design strategies to regenerate the human heart after myocardial infarction.

Dr. Gonzalez-Rosa received his Ph.D. in Molecular Biology from the Universidad Autonoma (Madrid) and the Spanish National Center for Cardiovascular Research in 2013. During his thesis work under the supervision of Dr. Nadia Mercader, he pioneered the development of a new cryoinjury model to study zebrafish heart regeneration. In October 2013, Dr. Gonzalez-Rosa joined the laboratory of Caroline and Geoffrey Burns at Massachusetts General Hospital and Harvard Medical School. As a postdoctoral researcher, his research was supported by a Long-Term Postdoctoral Fellowship from EMBO and the Funds for Medical Discovery Award from ECOR-MGH. In June 2019, Dr. Gonzalez-Rosa joined the CVRC faculty after receiving the Career Development Award from the American Heart Association.



Date posted: June 4, 2019 | Author: | Comments Off on Juan Manuel Gonzalez-Rosa, PhD


Our laboratory focuses on the development and application of novel technologies to understand cardiac arrhythmia and other cardiovascular related diseases using animal models. Specifically, we are interested in developing atrial fibrillation models, cardiac failure models, myocardial infarction models, and other cardiovascular disease animal models.  We are also interested in developing and testing medical devices and drugs through pre-clinical studies. 

I received my PhD in Biomedical Engineering from Iowa State University and then completed post-doctoral fellowships at Yale School of Medicine and Harvard Medical School.  Previously I was a research scientist at the Massachusetts Institute of Technology and worked for several years with medical device companies. 

Date posted: March 29, 2018 | Author: | Comments Off on Kichang Lee, PhD


Dr. Nguyen’s lab focuses on the development and clinical application of novel imaging techniques to evaluate the cardiovascular system including MRI, optical, and PET. Our primary research interests fall into three general areas, in which we develop, clinically translate, and clinically apply new imaging techniques to (1) evaluate myocardial remodeling and regeneration, (2) investigate myocardial metabolism, and (3) characterize vascular biology. The ultimate goal of our research is to empower scientists and clinicians with novel imaging technologies to answer fundamental questions in cardiovascular biology and pathophysiology.

Our lab designs and implements in-house imaging technologies on cutting-edge scanners at the MGH/HST Martinos Center for Biomedical Imaging. We study both large animal models and patients on human clinical systems for immediate clinical translation.

Dr. Nguyen received his PhD in Biomedical Engineering from the University of California Los Angeles in 2015 as a NIH Ruth L. Kirschstein NRSA pre-doctoral fellow. This led to his postdoctoral training at Cedars-Sinai Medical Center and affiliated postdoctoral fellowship at MGH. Subsequently in early 2017, he was promoted to faculty at Cedars-Sinai Medical Center in the Department of Biomedical Sciences and Biomedical Imaging Research Institute. In October 2017, Dr. Nguyen joined the CVRC faculty after receiving the early career NIH NIBIB Trailblazer Award.

Date posted: November 17, 2017 | Author: | Comments Off on Christopher Nguyen, PhD


The Das laboratory focuses on discovering and characterizing plasma RNAs and extracellular vesicles that may serve as biomarkers for disease phenotypes and processes associated with heart failure and left ventricular remodeling. As part of the NIH Extracellular RNA Communication Consortium we have developed new bioinformatics tools and techniques to measure extracellular RNAs and study their functional role in animal and cell culture models.

In addition we have worked on cellular processes such as autophagy that play a role in cardiac remodeling and may be regulated by extracellular vesicles and RNA. Finally, we are developing novel RNA-based therapies based on our human translational discoveries for treating cardiac remodeling and heart failure.



Date posted: December 17, 2016 | Author: | Comments Off on Saumya Das, MD, PhD


The laboratory focuses on the role of immunity in cardiovascular disease, specifically in atherosclerosis and heart failure. Of particular interest are the supply and production of leukocytes by the hematopoietic system, and the signals that regulate hematopoiesis after ischemic injuries such as myocardial infarction or stroke. We described that after myocardial infarction, the spleen releases a large population of ready-made leukocytes that travel to the ischemic heart (Science 2009). We further found that after myocardial infarction, increased sympathetic nerve activity modulates the hematopoietic stem cell niche, activating migration and proliferation of myeloid progenitor cells. This, in turn, accelerated the progression of atherosclerosis (Nature 2012), possibly explaining why secondary infarcts are so common in patients. We are interested in identifying and blocking danger signals arising from ischemic injury, including neural signals that amplify systemic inflammation. The laboratory also develops and employs imaging approaches to sample biology non-invasively, using MR, nuclear, optical and hybrid imaging.


Date posted: January 27, 2016 | Author: | Comments Off on Matthias Nahrendorf, MD, PhD