Millions of patients die annually from diseases that affect organs with limited regenerative capacity such as the heart. In contrast, zebrafish regenerate most organs naturally after injury. The goal of our research is to identify barriers to heart regeneration using the zebrafish as a model organism. Our lab is particularly interested in understanding how polyploidization (the increase in DNA content associated with the maturation of certain cell types) reduces the regenerative competence of cardiomyocytes. Our ultimate goal is to make fundamental discoveries that could be later used to design strategies to regenerate the human heart after myocardial infarction.
space

Dr. Gonzalez-Rosa received his Ph.D. in Molecular Biology from the Universidad Autonoma (Madrid) and the Spanish National Center for Cardiovascular Research in 2013. During his thesis work under the supervision of Dr. Nadia Mercader, he pioneered the development of a new cryoinjury model to study zebrafish heart regeneration. In October 2013, Dr. Gonzalez-Rosa joined the laboratory of Caroline and Geoffrey Burns at Massachusetts General Hospital and Harvard Medical School. As a postdoctoral researcher, his research was supported by a Long-Term Postdoctoral Fellowship from EMBO and the Funds for Medical Discovery Award from ECOR-MGH. In June 2019, Dr. Gonzalez-Rosa joined the CVRC faculty after receiving the Career Development Award from the American Heart Association.

 

space

Date posted: June 4, 2019 | Author: | Comments Off on Juan Manuel Gonzalez-Rosa, PhD

Categories:

Dr. Nguyen’s lab focuses on the development and clinical application of novel imaging techniques to evaluate the cardiovascular system including MRI, optical, and PET. Our primary research interests fall into three general areas, in which we develop, clinically translate, and clinically apply new imaging techniques to (1) evaluate myocardial remodeling and regeneration, (2) investigate myocardial metabolism, and (3) characterize vascular biology. The ultimate goal of our research is to empower scientists and clinicians with novel imaging technologies to answer fundamental questions in cardiovascular biology and pathophysiology.

Our lab designs and implements in-house imaging technologies on cutting-edge scanners at the MGH/HST Martinos Center for Biomedical Imaging. We study both large animal models and patients on human clinical systems for immediate clinical translation.

Dr. Nguyen received his PhD in Biomedical Engineering from the University of California Los Angeles in 2015 as a NIH Ruth L. Kirschstein NRSA pre-doctoral fellow. This led to his postdoctoral training at Cedars-Sinai Medical Center and affiliated postdoctoral fellowship at MGH. Subsequently in early 2017, he was promoted to faculty at Cedars-Sinai Medical Center in the Department of Biomedical Sciences and Biomedical Imaging Research Institute. In October 2017, Dr. Nguyen joined the CVRC faculty after receiving the early career NIH NIBIB Trailblazer Award.

Date posted: November 17, 2017 | Author: | Comments Off on Christopher Nguyen, PhD

Categories:

Our lab focuses on the molecular mechanisms of the beneficial effects of exercise on metabolism and the brain, with a special interest in secreted factors. The ultimate goal of our research is to identify novel therapeutic targets to combat cognitive impairment in aging or neurodegenerative diseases.

We use various genetic mouse models to dissect the effect of exercise on de novo neurogenesis, synaptic plasticity, and learning and memory. To identify novel pathways we are employing a broad range of cutting-edge technologies, including RNA sequencing, high resolution mass spectrometry, and advanced molecular-based screenings.

Dr. Wrann is an Assistant Professor in Medicine at the Cardiovascular Research Center at Massachusetts General Hospital (MGH) and the Harvard Medical School in Boston. In addition, Dr. Wrann is an affiliate of the Harvard Stem Cell Institute. She is the recipient a K99/R00 Pathway to Independence Award from the NINDS.  Her research focuses on the beneficial effects of exercise on metabolism and brain health, and specifically secreted factors as potential drug targets.

Dr. Wrann studied veterinary medicine at the University of Veterinary Medicine Hannover, the University of Cambridge, and Cornell University. She received her Ph.D. with Summa cum laude in Immunology from the University of Veterinary Medicine Hannover in 2008. She concluded her postdoctoral  training in the laboratory of Dr. Bruce Spiegelman at Dana-Farber Cancer Institute and Harvard Medical School. In April 2016, she joined the faculty of the CVRC to start her own laboratory.

For recent publications see: Wrann et al. Cell Metabolism 2012, Jedrychowski and Wrann et al. Cell Metabolism 2015, Wrann et al. Brain Plasticity 2015.

Complete List of Published Work in MyBibliography:   http://www.ncbi.nlm.nih.gov/myncbi/collections/mybibliography/?reload=addSuccess

Date posted: May 5, 2017 | Author: | Comments Off on Christiane Wrann DVM, PhD

Categories:

Lung injury in newborns and infants often causes abnormal lung development and function. For example, in infants with some forms of congenital heart disease, lung injury causes an abnormal increase in the smooth muscle cells in the blood vessels of the lung periphery and, in part through this mechanism, causes pulmonary hypertension and heart failure. In premature infants, lung injury associated with life-sustaining ventilation of the lungs with oxygen can decrease the development of the peripheral lung and cause bronchopulmonary dysplasia, a chronic lung disease. The long-term goals of my laboratory are to explore the fundamental mechanisms of lung injury and to develop novel therapies for pulmonary diseases in newborns and infants.

Date posted: February 4, 2014 | Author: | Comments Off on Jesse David Roberts Jr., MD

Categories:

Jing-Ruey Joanna Yeh’s research program seeks to identify disease mechanisms and discover effective therapies for cancer and cardiovascular diseases using innovative approaches and zebrafish, cell culture and mouse models.  Through a chemical suppressor screen in a zebrafish model of acute myeloid leukemia (AML), the Yeh lab has previously identified that cyclooxygenase-2 (COX-2) inhibitors can suppress self-renewal of leukemia stem cells that express the AML1-ETO oncogene. This finding implies that COX-2 inhibitors may protect against relapse in AML patients. The current research focuses are directed to understand the roles of several metabolic enzymes and their metabolites in oncogenic transformation and heart diseases. Dr. Yeh’s long-term goal is to translate the knowledge obtained in her lab into clinic.

In addition, Joanna Yeh’s research team (in collaboration with Keith Joung and Randall Peterson’s groups at MGH) has also been at the forefront of advancing technologies for zebrafish genome engineering using various customizable site-specific nuclease platforms such as zinc finger nucleases (ZFNs), TALE nucleases (TALENs) and CRISPR/Cas. These technologies make it possible to use zebrafish as a powerful in vivo model for large-scale functional genomics studies.

Dr. Yeh received her PhD from Yale University after studying with Dr. Craig Crews in chemical biology. She then completed a postdoctoral fellowship in the laboratory of Dr. Randall Peterson at MGH. Dr. Yeh is a recipient of the Claflin Distinguished Scholar Award and the Hassenfeld Clinical Scholar Award from MGH. Her research has been published in Nature Chemical Biology, Nature Biotechnology, Cell Metabolism, Nature Methods, PNAS, Blood and others.

You can read an overview of her lab here.

Date posted: November 26, 2013 | Author: | Comments Off on Jing-Ruey Joanna Yeh, PhD

Categories: