Our lab focuses on the molecular mechanisms of the beneficial effects of exercise on metabolism and the brain, with a special interest in secreted factors. The ultimate goal of our research is to identify novel therapeutic targets to combat cognitive impairment in aging or neurodegenerative diseases.

We use various genetic mouse models to dissect the effect of exercise on de novo neurogenesis, synaptic plasticity, and learning and memory. To identify novel pathways we are employing a broad range of cutting-edge technologies, including RNA sequencing, high resolution mass spectrometry, and advanced molecular-based screenings.

Dr. Wrann is an Assistant Professor in Medicine at the Cardiovascular Research Center at Massachusetts General Hospital (MGH) and the Harvard Medical School in Boston. In addition, Dr. Wrann is an affiliate of the Harvard Stem Cell Institute. She is the recipient a K99/R00 Pathway to Independence Award from the NINDS.  Her research focuses on the beneficial effects of exercise on metabolism and brain health, and specifically secreted factors as potential drug targets.

Dr. Wrann studied veterinary medicine at the University of Veterinary Medicine Hannover, the University of Cambridge, and Cornell University. She received her Ph.D. with Summa cum laude in Immunology from the University of Veterinary Medicine Hannover in 2008. She concluded her postdoctoral  training in the laboratory of Dr. Bruce Spiegelman at Dana-Farber Cancer Institute and Harvard Medical School. In April 2016, she joined the faculty of the CVRC to start her own laboratory.

For recent publications see: Wrann et al. Cell Metabolism 2012, Jedrychowski and Wrann et al. Cell Metabolism 2015, Wrann et al. Brain Plasticity 2015.

Complete List of Published Work in MyBibliography:   http://www.ncbi.nlm.nih.gov/myncbi/collections/mybibliography/?reload=addSuccess

Date posted: May 5, 2017 | Author: | Comments Off on Christiane Wrann DVM, PhD

Categories:

The Das laboratory focuses on discovering and characterizing plasma RNAs and extracellular vesicles that may serve as biomarkers for disease phenotypes and processes associated with heart failure and left ventricular remodeling. As part of the NIH Extracellular RNA Communication Consortium we have developed new bioinformatics tools and techniques to measure extracellular RNAs and study their functional role in animal and cell culture models.

In addition we have worked on cellular processes such as autophagy that play a role in cardiac remodeling and may be regulated by extracellular vesicles and RNA. Finally, we are developing novel RNA-based therapies based on our human translational discoveries for treating cardiac remodeling and heart failure.

 

 

Date posted: December 17, 2016 | Author: | Comments Off on Saumya Das, MD, PhD

Categories:

Jing-Ruey Joanna Yeh’s research program seeks to identify disease mechanisms and discover effective therapies for cancer and cardiovascular diseases using innovative approaches and zebrafish, cell culture and mouse models.  Through a chemical suppressor screen in a zebrafish model of acute myeloid leukemia (AML), the Yeh lab has previously identified that cyclooxygenase-2 (COX-2) inhibitors can suppress self-renewal of leukemia stem cells that express the AML1-ETO oncogene. This finding implies that COX-2 inhibitors may protect against relapse in AML patients. The current research focuses are directed to understand the roles of several metabolic enzymes and their metabolites in oncogenic transformation and heart diseases. Dr. Yeh’s long-term goal is to translate the knowledge obtained in her lab into clinic.

In addition, Joanna Yeh’s research team (in collaboration with Keith Joung and Randall Peterson’s groups at MGH) has also been at the forefront of advancing technologies for zebrafish genome engineering using various customizable site-specific nuclease platforms such as zinc finger nucleases (ZFNs), TALE nucleases (TALENs) and CRISPR/Cas. These technologies make it possible to use zebrafish as a powerful in vivo model for large-scale functional genomics studies.

Dr. Yeh received her PhD from Yale University after studying with Dr. Craig Crews in chemical biology. She then completed a postdoctoral fellowship in the laboratory of Dr. Randall Peterson at MGH. Dr. Yeh is a recipient of the Claflin Distinguished Scholar Award and the Hassenfeld Clinical Scholar Award from MGH. Her research has been published in Nature Chemical Biology, Nature Biotechnology, Cell Metabolism, Nature Methods, PNAS, Blood and others.

You can read an overview of her lab here.

Date posted: November 26, 2013 | Author: | Comments Off on Jing-Ruey Joanna Yeh, PhD

Categories: